Relatório de Pesquisa de Mestrado

# Ajuste topográfico do campo do vento na CLP da região da Estação Antártica Brasileira Comandante Ferraz (EACF)

Mariana Fadigatti Picolo

Orientadora: Profª. Dra. Jacyra Soares

Relatório de Atividades

Abril/Setembro-2014

Laboratório de Interação Ar-Mar Departamento de Ciências Atmosféricas Instituto de Astronomia, Geofísica e Ciências Atmosféricas Universidade de São Paulo

## Sumário

| 1. Resumo do Projeto de Pesquisa            | 3  |
|---------------------------------------------|----|
| 2. Objetivos                                | 3  |
| 3. Região de Estudo e Dados Utilizados      | 3  |
| 4. Rotinas de Ajustes do Campo de Vento     | 4  |
| 4.1 Rotina 1- Anderson (1971)               | 5  |
| 4.2 Rotina 2- Dickerson (1978)              | 8  |
| 5. Referências Bibliográficas               | 11 |
| 6. Outras Atividades                        | 11 |
| 6.1 Disciplinas                             | 11 |
| 6.2 Exame de Proficiência em Línguas        | 12 |
| 7. Atividades Futuras e Cronograma Completo | 12 |

## 1. Resumo do projeto de pesquisa

A obtenção do campo de vento, importante para vários estudos de interação superfície atmosfera e de estudos de impactos ambientais, é limitada em razão de medidas espacialmente esparsas, particularmente em regiões com relevo acidentado. Em regiões de terreno plano, o vento medido em uma torre pode ser representativo de uma determinada área ao seu redor.

Medidas micrometeorológicas realizadas a 5 metros do nível da superfície, por exemplo, são representativas de uma área circular de raio igual a 500 metros em torno do local da medida. Porém, em áreas em que o terreno varia significativamente, o vento medido em um único local pode não representar adequadamente o vento na região a sua volta, pois as regiões com topografia complexa podem causar grandes modificações nos escoamentos de grande e meso escalas.

Neste projeto serão utilizados dois modelos diagnósticos (Anderson, 1971 e Dickerson, 1978), os quais assumem restrições físicas como conservação de massa e atmosfera incompressível, o que reduz a divergência do escoamento.

## 2. Objetivos

O objetivo geral do trabalho é estudar o escoamento do vento na região da Estação Antártica Brasileira Comandante Ferraz. Para realização deste estudo serão utilizadas duas rotinas numéricas diagnósticas e bidimensionais, (Anderson, 1971 e Dickerson, 1978).

## 3. Região de estudo e dados utilizados

Será investigada a região da Estação Antártica Brasileira Comandante Ferraz (EACF) localizada na Ilha Rei George (62º05'S, 058º 23'W).

A topografia da região em que se localiza a EACF (Figura 1) induz circulações locais e interage com as circulações de meso e larga escalas, sendo portanto que o conhecimento dos padrões de circulação de vento contribuirá, inclusive, para o monitoramento dos possíveis impactos ambientais antrópicos na região.



Figura 1- Localização da EACF (ponto vermelho).

Os dados de topografia utilizados apresentam uma resolução de 400 m (Figura 2) e altitudes que chegam a ultrapassar 500 m.



Figura 2- Isolinhas de altura da superfície (m).

Serão utilizados dados de velocidade do vento obtidos da EACF. A estação possui uma torre e os dados são obtidos por um anemômetro a cada 5 minutos em três níveis, 2 m, 5 m, 10 m. Serão utilizados também dados de altura da CLP.

#### 4. Rotinas de ajuste do campo do vento

Nesta seção serão descritas as rotinas utilizadas na realização do projeto de pesquisa.

#### 4.1 Rotina 1- Anderson (1971)

Este modelo considera conservação de massa e atmosfera incompressível e assume um movimento vertical limitado superiormente pelo topo da CLP e inferiormente pelos contornos topográficos. A altura da CLP é somada acima de cada ponto da topografia, portanto ela acompanha os contornos topográficos, simulando condições em que o escoamento sempre passará por cima das elevações topográficas. O modelo integra a equação da continuidade entre a superfície e o topo da CLP. A equação da continuidade para um escoamento incompressível é:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \ (1)$$

Onde, u, v e w são as componentes horizontais e vertical do vento nas direções x, y e z, respectivamente. Sendo então:

$$\nabla_{H}.\overrightarrow{V_{H}}(x,y,z) = -\frac{\partial w(x,y,z)}{\partial z}$$
 (2)

Integrando (2) entre a superfície h(x,y) e o nível superior da CLP H:

$$\int_{h(x,y)}^{H} \nabla_{H} \cdot \overrightarrow{V_{H}}(x,y,z) dz = -\int_{h(x,y)}^{H} \frac{\partial w(x,y,z)}{\partial z} dz$$

Sendo o termo do lado direito calculado como:

$$\int_{h(x,y)}^{H} \nabla_{H} \cdot \overrightarrow{V_{H}}(x,y,z) dz = -w(x,y,H) + w(x,y,h) \quad (3)$$

Aplicando-se a regra de Leibnitz ao lado esquerdo da equação (3) e assumindo que w(x, y, H) = 0 tem-se:

$$\nabla_{\mathrm{H}} \int_{h(x,y)}^{H} \overrightarrow{V_{\mathrm{H}}}(x,y,z) dz - \nabla_{\mathrm{H}} H. \overrightarrow{V_{\mathrm{H}}}(x,y,H) + \nabla_{\mathrm{H}} h(x,y). \overrightarrow{V_{\mathrm{H}}}(x,y,h(x,y)) = w(x,y,h) \quad (4)$$

Definindo a média vertical de uma variável A(x, y, z):

$$\overline{A(x,y,z)} = \int_{h(x,y)}^{H} \frac{A(x,y,z)}{(H-h(x,y))} dz$$

Aplicando a definição acima, considerando que a divergência é nula e que H>>h:  $\nabla_H \cdot \left[ \overrightarrow{V}_H(x, y)(H) \right] = \nabla_H h(x, y) \cdot \overrightarrow{V}_H(x, y, h(x, y))$  (5)

Para um fluido incompressível e irrotacional, deve existir uma função potencial:

$$\overrightarrow{V_H}(x,y) = \frac{\partial \phi}{\partial x}\vec{i} + \frac{\partial \phi}{\partial y}\vec{j}$$

Sendo  $\phi$  é a função potencial do escoamento induzido topograficamente. Aplicando em (5):

$$\frac{\overline{\partial^2 \phi}}{\partial x^2} + \frac{\overline{\partial^2 \phi}}{\partial y^2} = \frac{1}{H} \overrightarrow{V_H}(x, y, h(x, y)) \cdot \nabla_H h(x, y)$$
(6)

A equação acima (equação de Poisson) representa a função potencial bidimensional do campo de vento influenciado pela topografia. Discretizando o lado direito da equação (6) em diferenças finitas:

$$\overrightarrow{V_{H}}(x, y, h(x, y)) \cdot \nabla_{H}h(x, y) = \frac{u_{obs}(i, j)(h(i + 1, j) - h(i - 1, j))}{(x(1 + 1) - x(i - 1))} + \frac{v_{obs}(i, j)(h(i, j + 1) - h(i, j - 1))}{(y(j + 1) - y(j - 1))} (7)$$

Sendo  $u_{obs}$  e  $v_{obs}$  as componentes do vento observado e i,j as posições dos pontos da grade A de Arakawa (Messinger and Arakawa, 1982). A grade escolhida permite menor quantidade de cálculos computacionais, no entanto o erro de truncamento é maior. Discretizando o Laplaciano da função  $\phi$ e diferenças finitas:

$$\frac{\partial^{2} \phi}{\partial x^{2}} + \frac{\partial^{2} \phi}{\partial y^{2}} = \frac{1}{\Delta x_{c}c} \left( \frac{\phi(i+1,j) - \phi(i,j)}{\Delta x_{u}u} - \frac{\phi(i,j) - \phi(i-1,j)}{\Delta x_{d}} \right) \\ + \frac{1}{\Delta y_{c}c} \left( \frac{\phi(i,j+1) - \phi(i,j)}{\Delta y_{u}u} - \frac{\phi(i,j) - \phi(i,j-1)}{\Delta y_{d}} \right) = f_{i,j} (8)$$

Onde:

 $\Delta x_c = x(i + 1/2, j) - x(i - 1/2, j)$   $\Delta y_c = y(i, j + 1/2) - y(i, j - 1/2)$   $\Delta x_u = x(i + 1, j) - x(i, j)$   $\Delta y_u = y(i, j + 1) - y(i, j)$   $\Delta x_d = x(i, j) - x(i - 1, j)$  $\Delta y_d = y(i, j) - y(i, j + 1)$ 

Sendo  $f_{i,j}$  é a forçante, discretizada em diferenças finitas.

Agrupando os termos:

$$a\phi(i+1,j) + b\phi(i-1,j) + c\phi(i,j+1) + d\phi(i,j-1) + e\phi(i,j) = f_{i,j}$$

Onde a, b, c, d, e são os coeficientes da equação bidimensional de Poisson:  $a = \frac{1}{\Delta x\_c} \frac{1}{\Delta x\_u}$ ,  $b = \frac{1}{\Delta x\_c} \frac{1}{\Delta x\_d}$ ,  $c = \frac{1}{\Delta y\_c} \frac{1}{\Delta y\_d}$ ,  $d = \frac{1}{\Delta y\_c} \frac{1}{\Delta y\_d}$ 

$$e = -\frac{1}{\Delta x\_c} \left( \frac{1}{\Delta x\_u} + \frac{1}{\Delta x\_d} \right) - \frac{1}{\Delta y\_c} \left( \frac{1}{\Delta y\_u} + \frac{1}{\Delta y\_d} \right)$$

O método da relaxação define um resíduo que, iterativamente, aproxima-se de zero, sendo:

 $a\phi(i+1,j) + b\phi(i-1,j) + c\phi(i,j+1) + d\phi(i,j-1) + e\phi(i,j) - f_{i,j} = R_{i,j}$ 

Sendo  $R_{i,j}$  é a diferença entre o campo inicial e a solução numérica (resíduo). Para calcular o campo a cada iteração utiliza-se:

$$\phi_{i,j}^{(n)} = \phi_{i,j}^{(n-1)} + \frac{\omega}{e} R_{i,j}^n$$
(9)

Onde, e é o coeficiente do ponto de grade em que se quer calcular a função  $\phi$  e  $\omega$  é chamado parâmetro de super-relaxação. O método de relaxação ou aproximação sucessiva é um procedimento no qual o campo inicial da solução é calculado e então progressivamente melhorado, até que seja atingido um nível aceitável de precisão (Holton, 1972).

A grade é dividida em pontos de grade pares e ímpares. Essa técnica é chamada de super-relaxação red and Black. O problema é que o erro cresce geralmente por um fator de 20 antes de ocorrer convergência (Press et al. 2007). Utiliza-se, então, acelaração de *Chebyshev*, em que se utiliza a grade dividida em pontos pares e ímpares e varia o valor de  $\omega$  em cada iteração como segue:

$$\omega^{(0)} = 1$$

$$\omega_{impar} = \frac{1}{(1 - \frac{r^2}{4})}$$

$$\omega_{par} = \frac{1}{(1 - \frac{r^2 \omega_{impar}}{4})}$$

Onde r é o raio de convergência de Jacob e seu valor varia entre zero e um. Os valores são calculados, utilizando esta técnica, duas vezes para cada ponto de grade, no entanto o número de cálculos é o mesmo que se houvesse apenas uma passagem.

Após obter a função potencial  $\phi$  através deste método descrito acima (super relaxação), calcula-se as componentes do campo total de vento:

$$u = \frac{\partial \phi}{\partial x} e v = \frac{\partial \phi}{\partial y}$$

Discretizando em diferenças finitas tem-se:

 $u(i,j) = (\phi(i+1,j) - \phi(i-1,j))/(x(i+1) - x(i-1))$  $v(i,j) = (\phi(i,j+1) - \phi(i,j-1))/(y(j+1) - y(j-1))$ 

As componentes ajustadas à topografia são calculadas subtraindo o vento observado do vento total:

 $u_{rec}(i,j) = u(i,j) - u_{obs}(i,j)$  $v_{rec}(i,j) = v(i,j) - v_{obs}(i,j)$ 

### 4.2 Rotina 2- Dickerson (1978)

O modelo utiliza a técnica variacional para ajustar o escoamento. Sasaki (1958) introduziu um método baseado no cálculo variacional que permite o ajuste de varáveis dependentes para satisfazer uma forte restrição ( $\varepsilon = 0$ , que será definido a seguir), enquanto que ao mesmo tempo modifica as observações por um ajuste mínimo (Dickerson, 1978). Esta rotina aceita limites sólidos no interior do domínio estudado, simulando condições em que a altura da CLP está abaixo de algumas elevações topográficas, o que resulta em campos de escoamento horizontal forçados ao redor das elevações. O método utiliza mínimos quadrados para estimar a diferença entre o campo de vento ajustado observado. Também considera conservação de massa e atmosfera incompressível.

Para desenvolver a equação considera-se um volume de controle Euleriano, portanto considera-se um volume  $\delta x$ ,  $\delta y$ ,  $\delta z$  fixo em um sistema de coordenadas cartesianas. A variação  $\delta z$  corresponde a uma altura H (altura da CLP). Considera-se que o fluxo no plano xy da base é zero, o volume está sobre uma superfície sólida. Existe entrada ou saída de massa na face superior do volume ao longo da componente z, ou seja, quando a altura H diminui há divergência de ar a coluna e há convergência quando H aumenta, para que ocorra conservação de massa.

A taxa de entrada e saída de massa através das faces direita e esquerda da coluna é (componente x):

$$(Hu)\delta y\delta z - \left(Hu + \frac{\partial(Hu)}{\partial x}\delta x\right)\delta y\delta z = -\frac{\partial(Hu)}{\partial x}\delta x\delta y\delta z$$

Para a componente y:

$$(Hv)\delta x\delta z - \left(Hv + \frac{\partial(Hv)}{\partial y}\delta y\right)\delta x\delta z = -\frac{\partial(Hv)}{\partial y}\delta x\delta y\delta z$$

Onde o primeiro termo à esquerda nas equações acima representa a entrada de massa e o segundo representa a saída. Para a componente z, a saída de massa por unidade de área ocorre apenas na parte superior:  $-w\delta x \delta y \delta z$ .

A divergência de massa na coluna deve ser proporcional à variação da altura H, então:

$$\frac{\partial H}{\partial t} + \frac{\partial (Hu)}{\partial x} + \frac{\partial (Hv)}{\partial y} + w = 0$$
(9)

A equação acima foi dividida por  $\delta x \delta y \delta z$ .

Quando dados observados são incluídos na equação acima pode haver um resíduo:

$$\frac{\partial H}{\partial t} + \frac{\partial (Hu)_0}{\partial x} + \frac{\partial (Hv)_0}{\partial y} + w_0 = \varepsilon_0$$

Onde  $\varepsilon_0$  é o erro entre os dados observados e os valores obtidos do balanço de massa na equação (variável mencionada acima). Para minimizar o erro a função é integrada no domínio formando o funcional variacional:

$$I = \int_{x,y} \left[ \alpha_1^2 (U - U_0)^2 + \alpha_1^2 (V - V_0)^2 + \alpha_2^2 (w - w_0)^2 + \lambda \left( \frac{\partial H}{\partial t} + \frac{\partial U}{\partial x} + \frac{\partial V}{\partial x} + w \right) \right] dxdy (10)$$

Sendo:

 $U_0 = (uH)_0$  é o fluxo de massa zonal observado U = (uH) é o fluxo de massa zonal ajustado  $V_0 = (vH)_0$  é o fluxo de massa meridional observado V = (vH) é o fluxo de massa meridional ajustado  $w_0$  é a velocidade vertical observado (assumida como zero)  $\lambda$  é o multiplicador Lagrangiano (função dos erros observado)  $\alpha_i^2$  é o fator peso ou módulo de precisão de Gauss. Está relacion

 $\alpha_i^2$  é o fator peso ou módulo de precisão de Gauss. Está relacionado às velocidades horizontal e vertical e permite ajustar o erro atribuído a cada uma destas velocidades. É definido por:

$$\alpha_i^2 = \frac{1}{2}\sigma_i^{-2}$$

Onde  $\sigma_i^{-2}$  é a variância do erro do campo observado. A integral (equação 10) pode ser reescrita como:

$$I = \int_{x,y} \left[ \alpha_1^2 (U - U_0)^2 + \alpha_1^2 (V - V_0)^2 + \alpha_2^2 (w - w_0)^2 + \lambda \left( \frac{\partial H}{\partial t} + w \right) - U \frac{\partial \lambda}{\partial x} - V \frac{\partial \lambda}{\partial y} \right] dx dy \ (11)$$

A derivada com relação às componentes da velocidade deve ser nula para que o erro seja mínimo. Para a componente U:

$$\frac{\partial I}{\partial U} = 0 \rightarrow \int_{x,y} \left[ 2\alpha_1^2 (U - U_0) - \frac{\partial \lambda}{\partial x} \right] dx dy = 0$$

Portanto:

$$U = U_0 + \frac{\partial \tilde{\lambda}}{\partial x}$$
(12)

Onde,

$$\tilde{\lambda} = \frac{1}{2\alpha_i^2}\lambda$$

Analogamente para a componente V:

$$V = V_0 + \frac{\partial \tilde{\lambda}}{\partial y}$$
(13)

Para a componente vertical:

$$\frac{\partial I}{\partial w} = 0 \to w + \frac{1}{2\alpha_2^2}\lambda = 0$$
$$w + (\frac{\alpha_1}{\alpha_2})^2 \tilde{\lambda} = 0 \ (14)$$

Derivando (12) em relação à x, (13) em relação à y e somando as duas com a (14), tem-se:

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + w = \frac{\partial U_0}{\partial x} + \frac{\partial V_0}{\partial y} + \frac{\partial^2 \tilde{\lambda}}{\partial x^2} + \frac{\partial^2 \tilde{\lambda}}{\partial y^2} - (\frac{\alpha_1}{\alpha_2})^2 \tilde{\lambda} \quad (15)$$

Substituir a equação (9) no lado esquerdo da equação acima e rearranjando os termos:

$$\frac{\partial H}{\partial t} + \frac{\partial^2 \tilde{\lambda}}{\partial x^2} + \frac{\partial^2 \tilde{\lambda}}{\partial y^2} - (\frac{\alpha_1}{\alpha_2})^2 \tilde{\lambda} + \frac{\partial U_0}{\partial x} + \frac{\partial V_0}{\partial y} = 0 \quad (16)$$

As equações analisadas são sensíveis aos valores escolhidos para  $(\frac{\alpha_1}{\alpha_2})^2$ . Quando  $(\frac{\alpha_1}{\alpha_2})^2$  tende a infinito, uma maior parte do erro associado a  $\varepsilon_0$  é transmitido diretamente ao campo de w. Quando  $(\frac{\alpha_1}{\alpha_2})^2 \rightarrow 0$  o desequilíbrio inicial de massa é reduzido para zero apenas ajustando os fluxos horizontais (Dickerson, 1978). Os valores que serão utilizados ainda não foram determinados.

A solução numérica da equação é feita em diferenças finitas centradas no espaço. Utiliza-se, neste caso a grade C de Arakawa (Messinger and Arakawa, 1982), em que os fluxos são calculados entre os pontos de grade diminuindo o erro de truncamento.

No centro de cada grade é utilizado o método de super-relaxação red and Black para o cálculo de  $\lambda$ :

$$\lambda_{i,j}^{(n)} = \lambda_{i,j}^{(n-1)} + \frac{\omega}{e} R_{i,j}^{(n)}$$
(17)

Esta rotina apresenta condição de contorno interna em que a topografia bloqueia o escoamento. Para satisfazer esta condição, a derivada normal de  $\lambda$  deve ser zero. As condições dos limites laterais da grade são satisfeitas para  $\lambda = 0$  ao redor da área estudada. Após, as componentes zonal e meridional do campo de vento são determinadas utilizando:

$$U = \frac{\partial \lambda}{\partial x}$$
$$V = \frac{\partial \lambda}{\partial y}$$

## 4. Referências Bibliográficas

- Anderson, G.E., 1971. Mesoscale influences on wind fields. J. Appl. Meteor., 10, 377-386.
- Dickerson, M.H., 1978. MASCON A mass-consistent atmospheric flux model for regions with complex terrain. *J. Appl. Meteor.*, **17**, 241-253.
- Holton, J.R., 1972. 2ª Ed. An introduction to Dynamic Meteorology, caps. 4 e 8.
- Messinger, F. and Arakawa, A., 1982. Numerical Methods Used In Atmospheric Models. Vol. 1. *GARP Publications Series*. №.17.
- Press, W.H., Teukolsky, S., Vetterling, W. and Flanner, B., 2007. *Numerical Recipes in Fortran-The art of Scientific Computing.* 3ªEd, 1061-1064.
- Sasaki, Y., 1958 An Objective Analyses Based on the Variational Method. *Journal of the Meteorological Society of Japan*, Ser. 2., **36**, No 3: 77 88.
- Veleda, D.; Soares J. e Karam H., 2000: *Campo do vento na Camada Limite Planetária sobre terreno complexo*. Anais do XI Congresso Brasileiro de Meteorologia. Rio de Janeiro. Outubro.
- Veleda, D., 2001: Ajuste do campo de vento sobre topografia complexa aplicado a um modelo de dispersão de poluentes. Dissertação de Mestrado. Instituto de Astronomia, Geofísica e Ciências Atmosféricas. Universidade de São Paulo.

## 5. Outras Atividades

#### 6.1 Disciplinas

Durante o primeiro semestre (março/julho-2014) foram cursadas as disciplinas listadas na tabela 1.

Tabela1- Disciplinas cursadas.

| Disciplinas                      | Créditos | Conceitos |  |
|----------------------------------|----------|-----------|--|
| AGM5713- Dinâmica da Atmosfera I | 6        | А         |  |
| AGM5822-Radiação Atmosférica I   | 6        | А         |  |
| AGM5716- Termodinâmica da        | 6        | А         |  |
| Atmosfera                        |          |           |  |
| AGM5714-Dinâmica da Atmosfera II | 6        | А         |  |

Foi obtido um total de 24 créditos.

Na tabela 2 são mostradas as disciplinas que estão sendo cursadas.

```
Tabela 2- Disciplinas em curso.
```

| Disciplinas                                | Créditos |
|--------------------------------------------|----------|
| AGM5804-Micrometeorologia                  | 10       |
| AGM5801-Modelagem Numérica da<br>Atmosfera | 10       |

No final do semestre serão totalizados 44 dos 46 créditos necessários.

## 6.2 Exame de proficiência em línguas

Foi obtida a aprovação no exame de proficiência em inglês em 14/08/2014.

## 7. Atividades futuras e cronograma de atividades

Primeiramente será determinado se a resolução dos dados de topografia é realmente de 400 m. Após essa verificação a área de estudo (figura 1) será delimitada por um quadrado de dimensões ainda não determinadas para construir uma grade que terá o espaçamento da resolução dos dados de topografia. Serão realizados testes das rotinas utilizando uma montanha Gaussiana para permitir uma prévia avaliação dos efeitos da topografia no escoamento.

A tabela 3 mostra um cronograma das atividades já realizadas.

Tabela 3- Atividades já realizadas.

| Atividades                            | Período               |
|---------------------------------------|-----------------------|
| Conclusão de 24 créditos em           | Março/Junho-2014      |
| disciplinas                           |                       |
| Aprovação no Exame de Proficiência    | 14/08/2014            |
| em Inglês                             |                       |
| Dedução e entendimento das            | Agosto/Setembro -2014 |
| equações e métodos utilizados nos     |                       |
| modelos que serão estudados           |                       |
| Leitura e atualização das referências | Abril-Setembro-2014   |
| bibliográficas                        |                       |
| Obtenção dos dados de topografia      | Setembro-2014         |

A tabela 4 mostra as atividades futuras.

Tabela 4- Atividades futuras.

| Atividades Futuras                           |    |          |     |         |      |
|----------------------------------------------|----|----------|-----|---------|------|
| Determinação                                 | da | precisão | dos | dados   | de   |
| topografia.                                  |    |          |     |         |      |
| Determinação da grade que será utilizada nos |    |          |     |         |      |
| modelos                                      |    |          |     |         |      |
| Aplicação de testes nas rotinas              |    |          |     |         |      |
| Continuação                                  | da | leitura  | das | referên | cias |
| bibliográficas                               |    |          |     |         |      |
| Conclusão de 44 créditos                     |    |          |     |         |      |
| Exame de qualificação                        |    |          |     |         |      |

Os 44 créditos serão concluídos ao término do semestre (dezembro/2014). No próximo ano será realizado o exame de qualificação, no entanto não há uma data marcada.