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Summary. - A new method of derivation of characteristic turbulence length scales
is analysed in a procedure that seems to be a more adequate way of determining stable
boundary layer master length scales. The novel feature ofthis derivation is a provision
for multiple length scales, one for each different spacial direction. In its general
formulation, these multiple master length scales show a form similar to earlier
proposals by Blackadar and his followers.

PACS 92.60.Fm - Boundary layer structure and processes.

1. - Introduction.

Under clear skies and over land, the nocturnal Stable planetary Boundary Layer (SBL)
is characterized by negative values of turbulent vertical fluxes of sensible heat, resulting
from the wind-shear-induced turbulence and the stable thermal stratification produced
by the radiational cooling of the surface.

Differently from the diurnal Convective Boundary Layer (CBL) with typical height of
two kilometers, the SBL vertical extension is of only a few hundred meters. The source of
the turbulent kinetic energy in the latter case (mechanical only) is much less intense than
in the former case (thermal and mechanical) and it is strongly depleted by the work done
by the turbulence against the stable stratification. At middle latitudes, the SBLwind varies
with height, both in direction and magnitude. These variations depend on the intensity of
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the forcing (horizontal pressure gradients), the actual therrnal stability and the intensity
ofthe previous CBL. The presence oflow-Ieveljets at the top ofthe SBL is very common
and intrinsically related to their dynamics [1, 2].

Very often, the therrnal stability is so strong that the turbulent motions are inhibited,
causing the turbulence to partIy subside and become intermittent. Due to the
unsurrnountable difficuIties inherent to this state of the turbulence, we restrict our
analysis and its applicability to a fully turbu1ent SBL. Even a fully turbulent SBL responds
to changes in the surface forcing slowly, so that it is not in equilibrium with the surface.
Therefore its statistical structure is better described by a local similarity [2].For instance,
the turbulent transport of passive contaminant throughout the SBL is described by a local
Obukhov's length scale [3].

The importance ofturbulent transport of momentum, heat, water vapour and contami-
nants was identified a long time ago, as a major goal in the study of the SBL.A simplified
and physically reasonable way to describe this transport has had a recognized impact in
the prediction oflow-Ieveljets, fog and frost forrnation and air quality. The basic equations
for describing these processes are well known but their full utilization is not operational
both from analytical and numerica1 viewpoints. In practice one has to resort to some kind
of shortcuts represented by closure mode1s and associated parameterization of higher-
order moments. Moreover, even after the most simplifying assumptions, the resu1ting
equations are not suited for purely ana1ytical treatment. However these simp1ified mode1s
are easily amenable to numerical analysis, main1y in recent times when computer speed
and memory size become significantIy larger.

The second-order closure mode1s have been claimed to be one of the most appropri-
ated too1s to simulate numerically the p1anetary boundary 1ayer. They reconcile the
numerical amenability with a more basic physical description of the turbulent processo
Several second-order closure mode1s simu1ate appropriately the CBL. Simulating the SBL
on the basis of a second-order closure model is a more difficult task. This certainly
explains why SBL has been numerically simulated less frequentIy than the corresponding
CBL [4].The worst difficulty has to do with the proper choice of a turbulent mas ter length
scale [5] that leads to an adequate parameterization of the undeterrnined terrns in the
equations for the evolution of the second-order moments. It is also emphasized in the
literature [4] that a weakness common to alI such closure models is rooted in the correct
choice of characteristic lengths and on the fact that it is admitted that only one length scale
would be generically sufficient for an adequate description of turbulent transport phe-
nomena. Some authors [6] even doubt about the possibility of deterrnination of character-
istic length scales suited for any general purpose. However, some length scales such as
Blackadar's length scale [7] have acquired an almost universal acceptance. These seem-
ingly contrasting facts indicate, in our believe, the necessity of more general criteria for
supporting the proper selection of the referred length scales.

In this paper we bring not only a more natural derivation of length scales adequate to
geophysical boundary layers but, most importantIy, we introduce the concept of multiple
length scales as opposed to the current usage of a single length scale to describe transport
in alI three spacial directions. To support the new concept we compare parameters
derived from this theory to experimental and/or empirical data found in the literature and
come to suprisingly good results.

This paper is organized as follows: in sect. 2 we discuss Blackadar's and Brost-
Wyngaard's 1ength scales and derive new length scales from considerations about the
turbulent energy spectrum; in sect. 3 we utilize experimental data to compare the new
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length scales with that proposed by Brost and Wyngaard; finally, in sect. 4 we present
additional comments and suggest possible applications for multiple length scales, mainly
in connection with the development of a more realistic direct numerical simulation of
geophysical boundary layers.

2. - Turbulent length scales.

A widely used length scale is Blackadar's [7] length scale l expressed by

(1)
111
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where /( is von Karman's constant, z is the height above the ground and lo is the scale
characteristic ofthe energy containing eddies. Because Blackadar's scale is employed in
the derivation of characteristic length for transport phenomena in alI three different
spacial directions it is generally referred to as the mas ter length scale. As easily seen from
[1], the master length scale is proportional to z near the ground and goes as loat the top
of the planetary boundary layer when z is large.

One crucial point about the use of the master length scale is the modeling of the size
of the energy containg eddies lo'In this respect several procedures are currentIy found in
the literature [8].

In a welI-known case, the Brost-Wyngaard mo deI [9], the characteristic length lo=la is
determined by the balance between inertia forces and buoyant forces by the relation

(2)

where N is the Brunt-VllisãIã frequency determined by

(3)

0'",is a characteristic velocity scale determined by the variance of the vertical turbulent
velocity and C == 1.69is also an empirical constant suggested by Brost and Wyngaard [9]
and chosen as to yield critical flux and gradient Richardson numbers dose to 0.2 and 0.25,
respectively. In eq. (3) g is the acceleration of gravity, Tois a reference temperature and
eis the potential temperature.

A possibility for modeling lomight be based on the local similarity structure of the SBL
and its related energy spectrum, keeping Brost and Wyngaard's interpretation of loas the
size of the energy containing eddies. Subsequent theoretical works [2,10,11] on second-
order correlation approximation and related dosure models, have also exhibited similar-
ity structures for this regime. This possibility has recently been used to mo deI the energy
spectrum of the SBL starting from basic physical arguments [12].

Nevertheless this similarity structure, at least for the temperature, only occurs after
high-pass filtering ofthe data time series [3].The nonfiltered temperature data, colIected
at Cabauw, exhibited a much different behaviour than filtered data. In order to deal with
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the local character ofthe turbulence, it was first assumed that the appropriated flux scales
should depend on local values of the Reynolds stresses . (z), on the vertical heat flux
w8( z) and on the local Monin-Obukhov length A, as defined by

(4)

(5) w8 =(I-z/ht
w80

and

(6)

In (4)-(6), '0 == pu; is the surface stress, p is the air density, L is the Monin-Obukhov
length and ak are constants to be determined by fitting ofthe mo dei to experimental data.
It is also expeeted that these hypotheses be applicable in stable regimes over homogene-
ous terrains where turbulenee can be treated as continuous and not dominated by gravity
waves.

Recent development on local similarity theory [13] has lead to the derivation [3] of a
local energy spectrum

(7)

where i == u, v, w, U. =.Jr/p ,.f; is the frequeney of the spectral peak in the neutral

stratification, C, = 1.25 is an empirieal constant proposed by Sorbjan [13],j = n z/ U is the
redueed frequeney derived from the absolute frequency n and the mean wind speed U,.f;
is a reference frequeney derived in a similar way from ni ' the frequency at the maximum
on the speetrum. Also q is a similarity function given by

(8) q=H-3.7~
A'

with parameters determined by Sorbjan [13] that deseribes the maximum energy eddy
frequencies along the vertical and Ci is a constant derived from Kolmogorov law for the
inertial subrange.

The integral of Si over alI frequeney range yields the variance for the velocity
components. Therefore (7), after one integration in frequency, leads to

(9)
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We now insert criback in eq. (7) and obtain

(10)

The value ofthe spectrum at the origin as given by astatistical diffusion theory [3] defines
an eddy diffusivity and therefore Si(O)/ cr/is one typical turbulent time scale for transport
processes. The limit of Si for n ~ Oyields

(11)

This procedure yields a characteristic length for turbulent transport processes that has
Blackadar and Delage's [8] form

(12)
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We stress that (12) has been derived from a detailed pararneterization of the energy
spectrum which involved the characteristic time scale for eddy transporto Most important
to notice is that in this case we obtain three length scales instead ofthe usual single formo
Each component of this multiple maste'r length scaLe applies to a different direction.
Therefore, the turbulent transport is govemed by a specific length scale in each different
spatial direction.

For completeness we now specify these scales for alI three directions taking the value
ofthe frequency ofthe maximum energy containing eddy in the neutral casei; from the
experimentas analysed by Sorbjan [13].In this case study, itwas shown that 1.,.=0.33,1.,=0.058
and 1.,= 0.22 for series considered in the experimento Other authors may come to different
values but qualitatively they do not really differ [14]. The substitution ofthese values of
i; into eq. (12) yields

(13)
1 1 1

-=-+-
Lu 11.03z 2.931\ '

(14)
1 1 1

-=-+-
l,. 2.91z 0.771\'

(15)
111

-=-+-.
lll' 1.94z 0.521\

It is interesting to notice that, with respect to the verticallength scale, the theoretical
factor 1.94found in this derivation was previously deterrnined from experimental data [15]
as equal to 2. This certainly is a surprisingly good approximation. It is also important to
stress at this point that this derivation of the (multiple) master length scale leads
simultaneously to the determination of the characteristic size of the energy containing
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eddies lOiwhich in the present case has different values for each spacial direction
(anisotropic transports) and is detennined in tenns of the local Monin-Obukhov length A
Therefore in any second-order closure model study, it is fundamental to take into account
the spacial dependence of A, a point already stressed in the literature [2].

3. - Comparison of different models.

Two important characteristic lengths applicable to the stable boundary layer are the
local Obukhov length A and the vertical displacement length (5"./N which directly connect
to other characteristic lengths. As mentioned before, the crucial point about applying the
master length scale is the proper choice of size lofor the energy containing eddies. For this
reason it is now important to compare, for example, the result of Brost and Wyngaard (2)
with the tenn containing A in eq. (12). This analysis is basically a generalization of a
procedure already developed for the surface layer case [16]. To this end the hypothesis
that the fonn of the similarity functions in the outer layer should be identical to the fonn
of the Monin-Obukhov similarity functions in the surface layer [10] is adopted. The
similarity function C/>/f for the heat flux generalized for a SBL is

(16) C/> _ KZ de// ---t. dz'
z=0.74+4.7-
A

where t. = -wO/U. is acharacteristic temperature scale. The lastequalityin eq. (16)is an
empirical relation derived from the data obtained in the Kansas [17, 18] experimento
Equation (16) can be solved for t.

(17) t.= KZ de
0.74+4.7zjA ""ã;'

and the kinetic heat flux can be expressed as

(18) w8 == -t.U. = KZU. de
0.74+4.7zjA dz.

The stable stratification inhibits vertical motions and consequently reduces the
turbulent length scale. When this scale becomes much smaller than the height above the
ground the structure of the turbulence does not respond to the ground conditions and as
a consequence the explicit dependence on z is lost. This situation is commonly known as
the z-less stratification [19]. Therefore, for large z/ A, the heat flux approaches

(19)
- K de
wO =--AU.-.

4.7 dz
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We now insert the defmition of local Obukhov length

(20) w(J == _ e U~
A /(g'

into eq. (19) and obtain

(21) A =2.17 U.
/( N'

To proceed, we use (21) together with relations (2), (15) and all'= BU. in order to obtain

(22)
1 1 1.92

lB = C(all' 'N) =A'

or

(23) B = 1.13
/(C'

for von Karrnan's constant /(""004.

An experimental average value of B may be estimated from measureaments of all'
carried on stable boundary layers. Sorbjan [13]estimated all'""1.6U.from Minnesota data.
Data collected at Cabauw [2] lead to a similar value with a".""1.5U.. Other more recent
measuraments made on BAO -Tower [20] and SESAME experiment [21] yield, respec-
tively, all' "" 2U. and all' "" 1. 73U.. The substitution of C = 1.69 into eq. (23) leads to B = 1.67,
a value that replicates the experimental results with high accuracy. The values of the
Richardson numbers that lead to this value of C were obtained by Nieuwstadt from
Cabauw tower experiment under conditions of rather strong wind and continued turbulence.

Another interesting physical relation dependent on the Richardson number is the ratio
between the vertical displacement length a) N and the local Obukhov length A. By use of
(22) we find that the above ratio is a) NA"" 0.31. At this point it is worth mentioningthat
a recent large eddy simulation [22] has lead to values for this ratio in the range 0.30+ 0.35,
in good agreement with the present model.

4. - Conclusions.

In this paper we presented a method of derivation of characteristic turbulence length
scales. This was achieved by first presenting what is proposed as a more adequate way of
determining a stable boundary layer master length scale. The novel feature of this
derivation is the provision for multiple master length scales, one for each different spacial
direction. In its general forrnulation, the muItiple master length scales li show a forrn
similar to that proposed earlier by Blackadar [7], Brost and Wyngaard [9] and Venkatram
et alo[16].An interesting feature ofthese muItiple characteristic length scales li is that they

I
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become, like Delage's length scale, proportional to the local Monin-Obukhov length on the
upper part of the SBL. The nature of the subject is not suited for a direct check between
experiment and model. However a few aspects and consequences of the model could be
easily checked against known values of empirical and/or experimentally measured
parameters. One such test was the comparison ofthe resulting energy containing eddy size
as proposed by Brost and Wyngaard and the result of the present model. In addition, a
comparison of the models ratio of characteristic lengths au.!NA with the same parameter
as drawn from a large eddies simulation, defrnitely qualifies this spectral method as a
sound candidate for an altemative procedure to improve direct numerical simulation of
the noctumal stable planetary boundary layer. A numerical simulation study ofthe SBL is
presently carried out in which these scales are implemented ilJ a second-order closure
model. The preliminary results have indicated that the time and space evolution ofthe SBL
dynamical and thermodynamical structure is somehow sensitive to the use of master
length scales proposed herewith. The complete results of these simulations will be
published shortly elsewhere.
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