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Abstract: A neural network technique is applied to estimate hourly values of diffuse solar 
radiation at the surface in São Paulo City, Brazil, using as input global solar radiation and 
other meteorological parameters measured from 1998 to 2001. The neural network 
verification was performed using the hourly measurements of diffuse solar radiation 
obtained during the year of 2002. It was found that the inclusion of the atmospheric long 
wave radiation as input improves the neural network performance because it acts as 
surrogate for cloud cover information on the regional scale. An objective evaluation has 
shown that the diffuse solar radiation is better reproduced by neural network synthetic 
series than by correlation model. 
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Resumo: Técnica de rede neural é aplicada para estimar valores horários da radiação solar 
difusa na superfície da cidade de São Paulo, Brasil, usando como dados de entrada 
radiação solar global e outros parâmetros meteorológicos medidos de 1998 a 2001. A 
verificação da rede neural foi feita utilizando medidas horárias de radiação solar difusa 
obtidas durante o ano de 2002. Foi encontrado que a inclusão da radiação atmosférica de 
onda longa como entrada de dados melhora o desempenho da rede neural por atuar como 
informação da cobertura de nuvem em escala regional. Uma avaliação objetiva mostrou 
que a radiação solar difusa é reproduzida melhor por séries sintéticas geradas por rede 
neural do que por modelos de correlação. 
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INTRODUCTION 

The importance of knowing the temporal and spatial variations of diffuse solar radiation at 

surface has been explored in several papers (Collares-Pereira and Rabl, 1979; González and Calbó, 

1999; Oliveira et al., 2002a). However, solar radiation data are frequently available from only a few 

stations and over short periods of time. An alternative procedure to obtain solar radiation data is 

using numerical modeling but the main problem is the need of appropriate representation of cloud 

effects (Iqbal, 1983). As pointed out by Oliveira et al. (2002a) these problems are particularly 

severe in tropical regions, like Brazil, where cloud activity is a dominant feature of local climate 

and the solarimetric network is sparse with most of the stations located in urban areas. 

A common alternative is to estimate the diffuse component of solar radiation from empirical 

relationships derived from statistical analysis of direct and global solar radiation temporal series 

observed at surface (Liu and Jordan, 1960; Collares-Pereira and Rabl, 1979; Erbs et al., 1982; 

Satyamurti and Lahiri, 1992; Jacovides et al., 1996). These empirical models are based on the 

correlation between hourly, daily and monthly values of clearness index (energy flux received from 

the sun at surface over the energy flux received at the top of atmosphere) and diffuse fraction 

(diffuse/total solar radiation). The empirical relationships used to estimate hourly diffuse 

component of solar radiation are, in general, expressed in terms of nth-degree polynomials 

dependent on latitude, precipitable water content, atmospheric turbidity, surface albedo, altitude, 

solar elevation angle (LeBaron and Dirmhirn, 1983; Soler, 1990). 

Oliveira et al. (2002a) used measurements of global and diffuse solar radiation at surface in 

the City of São Paulo (Brazil) to derive empirical models to estimate hourly, daily and monthly 

diffuse solar radiation from values of global solar radiation at surface, based on the correlation 

between the diffuse fraction and clearness index (KT). The correlation models performed well for 

daily and monthly values. However, in the case of the hourly values, the expressions derived for 

São Paulo performed poorly. According to Erbs et al. (1982) the empirical models obtained from 

hourly value correlation do not produce good results because the hourly values of global solar 

radiation are very sensitive to the cloud type. In the case of São Paulo, cloud information (sky 

fraction, type and altitude) with hourly resolution is not available. 

Here, to avoid this shortcut inherent in correlation models, the hourly diffuse solar radiation 

was assumed to be a nonlinear function of other relatively easily measured meteorological 

parameters and estimated using multilayer perceptron (MLP) neural network with non-linear 
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transfer function (Rumelhart et al., 1986; Lawrence, 1091). The meteorological data, used in this 

work, were carried out between 1998 and 2002 at the City of São Paulo (Brazil). 

The neural network technique has been previously applied to several studies of radiation with 

hourly resolution, as for example to estimate hourly global solar radiation (Sfetsos and Coonick, 

2000) and global photosynthetically active radiation (López et al., 2001), however to the knowledge 

of the authors, the neural network technique has never been applied to estimate hourly values of 

diffuse solar radiation. 

The performance of the MLP neural network was objectively tested using mean-bias-error 

(MBE), root-mean-square-error (RMSE) and t-statistic (tS) (Stone, 1993). 

 

 

METEOROLOGICAL DATA SET 

Several surface meteorological parameters have been regularly measured in São Paulo City, 

Brazil, since May 1994. The measurements were taken on a platform located at the building top of 

“Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo” at the 

University Campus, in São Paulo western side, at 744 m amsl (23033'35''S, 46043'55”W), with a 

sampling frequency of 0.2 Hz (12 min-1) and stored at 5 minutes intervals. All data was checked, 

questionable data was removed, and the shadow-band blocking effects on the diffuse solar radiation 

values were taken into consideration (Oliveira et al, 2002b). All solar radiation quantities used in 

this work are expressed in units of megajoules per unit of area (MJ m-2) and correspond to the flux 

of energy per one hour.  

The measured parameters were: (1) global solar radiation, (2) diffuse solar radiation, (3) 

longwave atmospheric emission, (4) air temperature, (5) relative humidity and (6) atmospheric 

pressure. They were all measured at the surface level. 

Global solar irradiance and its diffuse component were measured by a pyranometer model 8-

48 and model 2, respectively; both built by Eppley Lab. Inc. These sensors were calibrated 

periodically (Oliveira et al, 2002b) using as secondary standard another spectral precision 

pyranometer model 2 – (Eppley). 

The diffuse component of the solar radiation was measured using a shadow-band device 

developed by the Laboratory Solar Radiation of UNESP, named “movable detector device” 
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(Oliveira et al, 2002c). Comparatively to other devices commercially available, this new device has 

a low cost and is much easier to operate and performs well for low latitude locations. 

The longwave atmospheric emission was measured by a Precision Infrared Radiometer 

(Model PIR Pyrgeometer) from Eppley, which is an instrument used for performing hemispherical, 

broadband, infrared radiative flux measurements, using thermopile temperature difference. Its 

composite transmission window is about 4-50 µm. The model PIR pyrgeometer comes with a 

battery-powered resistance network that provides a voltage that expresses the radiative flux 

contribution of the temperature reservoir. The longwave data used here was obtained considering 

the manufacturer’s optional battery –compensated output.  

The air temperature and relative humidity were estimated using a pair of thermistor from 

Vaisalla. A pressure transducer from Setra measured the atmospheric pressure. 

Some results obtained here will be compared to the results obtained by Oliveira et al. (2002a). 

The solar radiation data set used by Oliveira et al. (2002a) was taken on the same platform of the 

data used in this work and comprised the period of 62 months, from May 1, 1994 to June 30, 1999. 

 

 

NEURAL NETWORK 

There are several types of artificial neural networks and the selection of the proper one is a 

crucial point for the investigated problem. Here it is used the three-layer perceptron artificial neural 

network with nonlinear transfer function which has been shown to be effective alternative to more 

traditional statistical techniques (Schalkoff, 1992). The topology of three-layer perceptron neural 

network consists of several neurons in the input layers (each one representing one input feature), 

several neurons in the hidden layer and one neuron in the output layer representing the modeled 

parameter. Neurons have nonlinear sigmoid transfer function f(x)=1/(1+e-x). The standard back 

propagation algorithm (Rumelhart et al., 1986) was used for training the MLP. 

In short, the method of construction of MLP based model consists of (Božnar and Mlakar, 

1998): (i) Feature and pattern selection, (ii) Determination of proper MLP topology, (iii) Training 

and (iv) Verification. 

The purpose of feature determination and pattern selection techniques is to condense the most 

relevant information from the database making training process more efficient and the results 

significantly better. 
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In all the experiments performed here, the training set (learning and optimization dataset) 

consists of the period from 1998 to 2001. The testing set, taken from the year 2002, was employed 

for testing the validity of the generated series and also for comparison with the correlation method 

(Oliveira et al., 2002a). 

The optimization data set consisted of randomly selected 10% of patterns from the original 

training set and was used during the training process to periodically test the MLP performance 

using the “unknown” data set to determine the MLP’s generalization capabilities. The final network 

was the one that gave the smallest error on the optimization data set and not on the training set. 

 

Experiments 

Here 3 different experiments were performed and all networks were trained with patterns 

from almost 4 years long (January 1998 to September 2001) and verified using 1 year long dataset 

(year of 2002). Each measured or calculated parameter of this database represents a potential MLP 

input feature. The diffuse solar radiation (EDF) or its fraction over global solar radiation (KDF) is the 

MLP output feature. Every hourly interval vector of all selected parameters represents a pattern 

(Mlakar and Božnar, 1997). 

Firstly the database was analyzed using feature determination techniques (Mlakar, 1997) to 

decide which parameters are the most relevant for the MLP construction. It was used two 

techniques - contribution factors and saliency metric – both based on the analysis of weight of MLP 

trained with all the available and random parameters and all available patterns. 

Contribution factor of a particular parameter is the sum of the absolute weights guiding from 

the correspondent input neuron to the neurons in the hidden layer. The highest scores indicate the 

most relevant parameters to be input features for the final network. 

The saliency metric, by the other hand, is based on weights of the whole neural network, not 

only the input layers (Mlakar, 1997). 

Firstly the analysis was performed using all available parameters: the six measured 

parameters plus the year, local time, true day, true hour, local time sunset, local time sunrise, true 

time sunset, true time sunrise, day duration, solar zenith angle, solar elevation angle, solar hour 

angle, solar azimuth angle, correction factor of diffuse solar radiation (Oliveira et al, 2002c), partial 

pressure of the water vapor in the atmosphere, mixing ratio, theoretical solar radiation at the 

atmosphere top, fraction of diffuse over global solar radiations and a random parameter. After that, 
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the process was repeated using the 9 best ones: diffuse solar radiation (EDF), theoretical solar 

radiation at the atmosphere top (ET), global solar radiation (EG), longwave atmospheric emission 

(LW), relative humidity (RH), partial pressure of the water vapor in the atmosphere (VP), 

theoretical solar elevation angle (SEA), theoretical solar zenith angle (SZA) and theoretical solar 

azimuth angle (SAA), from 1998 to 2002 plus random parameter. 

In both methods the long wave radiation is an important input parameter, as important as the 

global solar radiation. 

Physically the long wave radiation short scale variations, associated with the presence of 

clouds and theirs effects over solar diffuse radiation, were captured by the neural network. 

Therefore, the long wave radiation measured at the surface seems to be a good surrogate for the 

cloud cover information over the region. On the other hand traditional meteorological parameters, 

like air temperature and atmospheric pressure, are not important as neural network input. 

The pattern selection technique was also used in one of the network construction. There are 

two main reasons for its use: (i) when the available training database is really huge the training 

process may be too slow and (ii) if some types of patterns are too frequent, but do not contain 

relevant information, they may “hide” the less frequent but very relevant patterns and consequently 

the final model may have a poor performance. Here, the hourly diffuse solar radiation values are 

more or less equally distributed over the whole range and therefore a good network should perform 

equally well in the entire spectrum of output values, as a contrast to pollution networks where a 

good model must predict well peaks of concentrations. 

Table 1 summarizes the experiments performed and the most successful combination of input 

features, obtained after several trials. The output features were the hourly diffuse over global solar 

radiation fraction. 

 EXP I EXP II EXP III 
Input features    

ET Yes Yes Yes 
EG Yes Yes Yes 
KT Yes Yes Yes 
LW Yes No Yes 
RH Yes Yes Yes 

SEA Yes Yes Yes 
SZA Yes Yes Yes 
SAA Yes Yes Yes 
VP Yes Yes Yes 

 
Selected patterns No No Yes 

Table 1: Experiment descriptions. 
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RESULTS 

In all the experiments performed here, the standard back propagation algorithm was used with 

learning rate 0.5 and momentum 0.9. The networks were trained using almost 4 years data (January 

1998 to September 2001) and verified using 1-year data (2002) that was not presented during the 

network training period. 

The first network (Experiment I) was trained with all available input features. To verify the 

importance of the long wave radiation as an input feature, Experiment II was performed using as 

input all the input features used in Experiment I except for long wave radiation.  

Trying to improve the network performance, the final experiment (Experiment III) was built 

similar to Experiment I but including pattern selection technique. The idea is to develop the 

reconstruction of the patterns with high values of diffuse solar radiation. Therefore, the neural 

network was trained with higher percentage of patterns having diffuse solar radiation greater than 1. 

For that reason, it was used only 40% randomly of the patterns with diffuse solar radiation less than 

1 and all patterns with higher values of solar radiation. 

 

Performance Evaluation 

To evaluate the performance of the MLP neural networks, for the City of São Paulo, a 

statistical comparison is performed using the indicator proposed by Stone (1993), a t-statistic (tS). 

This indicator is used along with two other well-known parameters: MBE and RMSE. Both MBE 

and RMSE have been specially employed as adjustment of solar radiation models (Oliveira et al., 

2002a; Soler, 1990; Halouani et al., 1993; Ma CCY and Iqbal, 1984; Targino and Soares, 2002).  

To determine whether a model’s estimates are statistically significant, one has simply to 

determine a critical tc value obtainable from standard statistical tables, e.g., tc (α/2) at the α level of 

significance, and N-1 degrees of freedom (Targino and Soares, 2002).  

A summary of the statistical parameters is shown in Table 2 for the values of EDF obtained in 

Experiments I, I, III and using the correlation model obtained by from Oliveira et al. (2002a). The 

critical values are relative to a level of confidence of 95 %. 
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 Sample size (h) MBE (MJ m-2) RMSE (MJ m-2) tS tc
Correlation model obtained by 

Oliveira et al. (2002a) 15258 -0.0169 0.193 11.16 1.96 

MLP neural network – Exp. I 2928 0.0116 0.121 5.19 1.96 
MLP neural network – Exp. II 2928 0.0291 0.152 10.63 1.96 
MLP neural network – Exp. III 2928 0.0110 0.155 3.86 1.96 

Table 2: Model statistics. tc is given at a level of confidence of 95 %. 

 

The worst statistical result is given by the diffuse radiation hourly values derived for São 

Paulo using correlation model. The best result was obtained by Experiment III whereas it still not 

inside the acceptance region. Once that the hourly values of solar radiation are very sensitive to the 

cloud cover, the improvement obtained in Experiment I when compared with Experiment II 

(without longwave radiation) seems to confirm that the longwave radiation can be used as a 

surrogate to the cloud cover over the region. 

 

Comparison between MLP and correlation model 

Hereafter, due to the best statistic performance of Exp. III, the discussion will be focused only 

in this experiment. 

The dispersion diagrams between the hourly values of diffuse solar radiation observed and 

obtained using MLP network are displayed in Fig.1. The coefficient correlation obtained using 

MLP (Fig. 1a; r = 0.94) is larger than that using correlation model (Fig. 1b; r = 0.91), indicating the 

better performance of the MLP network. 
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Figure 1: Dispersion diagram between the hourly values of diffuse radiation observed and (a) using MLP 
based on 2928 pairs of points and (b) using correlation model based on 15,258 pairs of points (from 
Oliveira et al., 2002a). Dashed line corresponds to diagonal and continuous line corresponds to curve fitted 
by least squares method. The correspondent linear equations are indicated in the bottom of each diagram 
and r is the correlation coefficient. 
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Histograms of the difference between solar diffuse radiation synthetic and observed are 

shown in Fig. 2. The standard deviation and the mean error value are also presented in the figure. In 

the case of MLP and of the correlation model the standard deviations are, respectively, 0.132 and 

0.182. In both cases, the mean values are in the vicinity of zero demonstrating a good performance 

of the MLP network. 
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Figure 2: Histogram of diffuse solar radiation difference between observed and modelled values. (a) 
MPL based on 2928 points and (b) Correlation model based on 15,258 points (from Oliveira et al., 
2002a). “SD” denotes the standard deviation and “Mean” the average error. 

 

The correlation between diffuse fraction and clearness index can be displayed in terms of 

 scatter diagrams. Fig. 3a shows KTK - DFK T observed in São Paulo versus KDF obtained using 

MLP network, based on 2928 pairs of points. Fig. 3b displays KT and KDF observed values, based 

on 15,258 pairs of points, obtained by Oliveira et al. (2002a).  

To characterize objectively the climatic behavior of the diffuse solar radiation at São Paulo, a 

4th-degree polynomial was fitted through the data points in  versus  diagrams (Fig. 3). This 

choice was based on fact that most of the expressions, available in the literature for hourly values, 

are 4

TK DFK

th -degree polynomials (Oliveira et al., 2002a; Erbs et al., 1982; Jacovides et al., 1996; 

Newland, 1989) allowing a straightforward comparison with previous works. The polynomial 

obtained using the data of Experiment III (Fig. 3a, continuous line) is: 

( ) ( ) ( ) ( )4
T

3
T

2
TTDF K14.3K01.0K50.4K10.190.0K ++−+=  

Oliveira et al. (2002a) obtained the polynomial expression (Fig. 3b, dashed line): 

( ) ( ) ( ) ( )4
T

3
T

2
TTDF K20.5K10.3K00.3K80.097.0K ++−+=  
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The resemblance between the observed and synthetic polynomial curves (dashed and 

continuous lines in Fig. 3) indicates that the neural network generated data preserve the regional 

climate feature of São Paulo. 
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Figure 3: -  scatter diagram for hourly values of solar radiation. (a) KTK DFK DF obtained using 
MLP, based on 2928 pairs of points and (b) KDF observed in São Paulo City, based on 15,258 pairs 
of points (from Oliveira et al. 2002a). The continuous and dashed lines display the 4th-degree 
polynomial curves obtained, respectively, from MLP and Oliveira et al. (2002a). 

 

 

DISCUSSION AND CONCLUSION 

In this work, a time series of almost 4 years of data was used to train MLP neural networks 

and 1 year of data was generated and used in the statistical analysis. The MLP methodology is 

based on the possibility of implicitly employing information associated with the problem without 

knowing the existing relationships between different variables and sources of information. 

The best result was obtained by Experiment III (which includes the long wave radiation and 

uses pattern selection technique) whereas it is still not inside the acceptance region of the t-statistic 

test. A polynomial expression was obtained fitting a 4th-degree polynomial through the data points 

of  observed in São Paulo versus KTK DF obtained using MLP network. The resemblance between 

the observed and synthetic curves indicates that the neural network generated data preserve the 

feature of the regional climate of São Paulo. 

A significant result is the importance of atmospheric long wave radiation as a surrogate to the 

cloud cover information on the regional scale, a very difficult parameter to measure and express in 
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diffuse solar radiation models. In contrast, traditional meteorological parameters, like air 

temperature and atmospheric pressure, are not as important as long wave radiation. 
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