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ABSTRACT 

This work describes an application of neural network technique to improve the quality of 

meteorological measurements. As an example it is shown one application of this methodology 

to correct dome effects on long wave radiation measured with pyrgeometer Eppley. 

Measurements of dome and case temperatures and meteorological variables available in 

regular surface stations (as global solar radiation, air temperature and air relative humidity) 

are enough to train the neural network algorithm and correct the observed long wave radiation 

for dome temperature effects in surface stations with similar climate of São Paulo city. 

RESUMO 

Este trabalho descreve a aplicação da técnica de rede neural para melhorar a qualidade das 

medidas meteorológicas. Como exemplo é mostrada uma aplicação deste método para corrigir 

os efeitos de emissão da cúpula nas medidas de radiação de onda longa efetuadas com 

pirgeômetro Eppley. Medidas de temperatura da cúpula e do corpo do pirgeômetro e de 

parâmetros meteorológicos disponíveis em qualquer estação meteorológica de superfície 

(como radiação global, temperatura e umidade relativa do ar) são suficientes para treinar o 

algoritmo de rede neural e corrigir as medidas de radiação de onda longa da atmosfera dos 

efeitos de temperatura da cúpula em estação de superfície com clima similar ao da cidade de 

São Paulo. 
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INTRODUCTION 

The neural network (NN) technique has been previously applied to generate artificial data 

in several hydrology applications (Pereira Filho and Santos, 2006; Ramirez et al., 2005), solar 

radiation modeling (Sfetsos and Coonick 2000; López et al., 2001; Soares et al., 2004) and 

meteorological applications in general (Gardner and Dorling, 1998; Hsieh and Tang, 1998).  

The first time when NN was applied to improve quality of meteorological measurements 

was when NN was applied to correct pyrgeometer data by Oliveira et al. (2006).  
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The objective of this work is to propose NN technique as a very powerful tool that can be 

applied to correct effects of sensor malfunctioning or time deterioration.  

NEURAL NETWORK TECHNIQUE 

The neural network consists of basic structures called neurons. The neurons only 

execute summation over weighted input values passing it to a nonlinear transfer function 

(tangents, hyperbolic, sigmoid, etc) to obtain a neuron output value (Oliveira et al., 2006).  

The three-layer perceptron artificial neural network with nonlinear transfer function is, 

in principle, a universal approximator and can be represented as a set of nonlinear equations 

used to calculate the output values from the input values. In the first layer each input 

parameter has its own neuron. The second layer is a hidden layer represented by several 

neurons. Each neuron in the second layer receives inputs from all the neuron outputs of the 

first layer. In the third layer this fully interconnected procedure is repeated again. There, the 

output layer has one neuron for each output parameter.  

Each interconnected layer must have its own weighting factors. The weighting factors 

are the neural network parameters determined during the training. The structure, the 

weighting factors and the nonlinear transfer function give to the neural network the ability of 

a universal approximator (Božnar and Mlakar, 2002).  

The three-layer perceptron artificial neural network with nonlinear transfer function is 

the most effective alternative to more traditional statistical techniques. Unlike other statistical 

techniques, the multilayer perceptron (MLP) makes no prior assumptions concerning the data 

distribution.  

The neural network model consists of the determination of: (i) number of layers and 

number of neurons in each layer (topology); (ii) parameters to be used as input (input 

features) and (iii) data vectors of input and output pairs (pattern selection) used for training 

(learning and optimization) and testing. 

The training process is basically the determination of the proper interconnection weights 

based on the learning set patterns so that the neural network output presents the best fit with 

the output given by the patterns in the optimization data set. In this way the neural network 

learns the information given in the learning set but still has the generalizing capabilities, not 

only memorizing capabilities. The generalizing capabilities ensure that the trained model is 

able to give reasonable results also for the unknown pattern (during the training period) that 

differs (but is still somehow similar) from all training patterns. The generalizing capabilities 
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make the multilayer perceptron neural network a good tool for atmospheric and related 

problems because the weather is always repeated but never exactly in the same way. 

PYRGEOMETER CORRECTION 

According to Fairall et al. (1998) the exclusive use of the manufacturer’s instruction 

can lead to errors in the total flux up to 5% (~ 20 W m-2). This error can be a serious problem 

when the longwave radiation flux is used, for instance, to perform energy balances or to 

recover surface temperatures. 

In this work the NN technique is applied to correct the pyrgeometer data collected 

without correction of the dome emission effects. In the experiment performed here, the 

training set (learning and optimization dataset) employs data measured in the period from 15 

October 2003 to 7 January 2004, corresponding to 73 days (1752 hours) at the City of São 

Paulo (Brazil). 

Each measured or estimated parameter of the database represents a potential MLP input 

feature and the corrected downward longwave radiation is the MLP output feature. The 

database was analyzed and the most relevant parameters for the MLP construction to be used 

as neural network input were: (i) observed longwave radiation, (ii) global solar radiation, 

(iii) air temperature, (iv) relative humidity and (v) local time.  

In the experiments performed here, the standard back propagation algorithm was used 

with learning rate 0.5 and momentum 0.9. Previous works show that this selection of 

parameters leads to a quick and effective learning (Božnar and Mlakar, 2002). The 

optimization data set was based on randomly selected 10% of patterns from the original 

training set and it was used during the training process to periodically test the MLP 

performance as the “unknown” data set to determine the MLP’s generalization capabilities. 

The final network was the one that gave the smallest error on the optimization data set and not 

on the training set. 

The testing set used for check the validity of the generated series was taken from 8 

January to 30 April 2004, comprising 89 days of continuous measurements of longwave 

radiation (2136 hours). 

RESULTS 

Figure 1 display, as an example, the hourly values of the air, dome and case temperatures. 

The dome temperature is considerably greater than the case temperature indicating an 
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important dome emission. During nighttime, very often, the dome is slightly warmer than the 

case and as consequence the dome emission effects are small but not zero. 

The resemblance between the longwave value curves obtained from multilayer perceptron 

neural network output and using Fairall correction (Fig. 2) indicates that the data generated by 

the neural network is able to reproduce the corrected longwave measurements. 
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Figure. 1. Diurnal evolution of hourly values of 
air (continuous line), case (dashed line) and dome 
(dot) temperatures. 

Figure 2. Hourly values of longwave radiations 
obtained as multilayer perceptron (MLP) neural 
network output (dot) and using Fairall et al. (1998) 
correction (continuous line). 

The dispersion diagram between the hourly values of longwave radiations corrected using 

Fairall et al. (1998) and obtained using MLP network is displayed in Fig. 3. The coefficient 

correlation obtained is r=0.99, indicating the good performance of the MLP network. The 

histogram of the difference between longwave radiations corrected using Fairall et al. (1998) 

and obtained using MLP network is shown in Fig. 4. The standard deviation and the mean 

error value are also presented in the figure. The mean value is in the vicinity of zero 

demonstrating a good performance of the MLP network. 
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Figure 3. Dispersion diagram of hourly values of 
longwave radiation corrected by Fairall et al. 
(1998) and using MLP output. The dashed and 
continuous line in corresponds diagonal and to 
the fitted curve.  

Figure 4. Histogram of longwave radiation 
difference between corrected by Fairall et al. (1998) 
and by MLP output. SD means the standard 
deviation. 
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CONCLUSION 

This paper presents a methodology for generating synthetic series of longwave radiation, 

corrected for dome emission effects on pyrgeometer model PIR from Eppley, based on neural 

network called multilayer perceptron.  

To apply the MLP parameters, developed in this work, is necessary having only 

accessible meteorological parameters (global solar radiation, air temperature and relative 

humidity) simultaneously to atmospheric longwave radiation measurements corrected only by 

manufacturer recommendations.  

The methodology of MLP neural network described here can be used for other places and 

also for other sensors as a general approach to improve the quality of the existing 

meteorological data, including corrections based on the technological improvement of the 

sensors or even on removing systematic errors caused by sensor malfunctioning. Special care 

has to be taken concerning the procedure of pattern and feature selection.  
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