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Abstract

The numerical surface energy-budget model proposed by Deardorff [J. Geophys. Res. 83(C4)

(1978) 1899] is used to simulate surface fluxes of sensible and latent heat and net irradiance for two

periods of the year in Iperó, SP, Brazil: winter of 1992 and summer of 1993. Surface energy models

are very sensitive to the soil–vegetation parameters. The values of these parameters, however, are

not easy to obtain. Here, a new approach to obtain a set of representative values of soil–vegetation

parameters is done by using inverse modeling. The parameter values obtained by the inversion model

and used in the numerical model to simulate the fluxes have provided a good description of the

interface soil–vegetation conditions in Iperó, according to statistical indicators employed to evaluate

the agreement between observed and simulated fluxes. The final results indicate that the inversion

method is a fast and efficient resource to obtain the parameters of a model when it is not otherwise

possible to get reliable reference values for numerical simulations. D 2002 Elsevier Science B.V. All

rights reserved.

Keywords: Turbulent fluxes; Estimated parameters; Soil–atmosphere interaction; Optimization technique; Inverse
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1. Introduction

The planetary boundary layer (PBL) plays an important role in the life of Earth. All

human and biologic activities take place in the PBL. This represents a good reason to

develop research about the physical processes of this region, where physical features are

very different from the others regions of the atmosphere. Meteorologists have invested in
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developing models of land surface processes for use in climate simulations, numerical

weather prediction, and air quality assessments. These efforts are necessitated by the

growing demand for a better understanding of climate processes over the land surface,

which must be studied in considerable detail because of their importance for food

production, use of water resources, ecological processes, and other human activities.

There are several sophisticated soil–vegetation schemes that provide realistic repre-

sentations of land surface–atmosphere exchange processes in meteorological models.

However, using these schemes requires specifying several input parameters, not always

available, to properly represent the characteristic of the land surface.

The correct specification of the turbulent fluxes represents an important point for the

numerical modeling work, and because of that many authors have already devoted

attention to the sensitivity of surface fluxes to the values of various important parameters

(Mihailovic and Kallos, 1997; Mihailovic et al., 1992; Ookouchi et al., 1984; Anthes,

1984; McCumber, 1980). The vertical turbulent fluxes of latent and sensible heat and

momentum define the lower boundary conditions of mesoscale models (Bougeault, 1991).

The surface sensible heat flux is a prime forcing mechanism of the PBL thermal

characteristics. Therefore, the partition of energy between the sensible and the latent heat

fluxes at the surface (i.e., the Bowen ratio) is a key factor in the development of the PBL.

The exchanges and forcing present in the PBL and the availability of humidity for

evapotranspiration also constitute important information for both meso-scale and large-

scale numerical simulations. For example, Shukla and Mintz (1982) showed that altering

the amount of soil moisture might have large effects on the climate of the continents. The

soil moisture through the release of turbulent latent heat flux from bare soil or a canopy

modulates the magnitude of the predicted turbulent sensible heat flux. Deardorff (1978)

(henceforth D78) showed that vegetation and soil moisture parameterizations significantly

alter surface parameters such as temperature and turbulent fluxes. McCumber and Pielke

(1981) found that vegetation and the soil moisture distribution affect the mesoscale

circulation patterns, thus affecting model predictions of precipitation and other meteoro-

logical features. Mihailovic et al. (1992) used observations over a maize field to show that

the fractional vegetation cover and bare soil texture alter the diurnal forcing of

meteorological parameters. At mesoscale resolutions, Jacquemin and Noilhan (1990)

carried out a sensitivity study using the HAPEX-MOBILHY data (André et al., 1986).

They found the following order of importance for surface parameters: soil moisture,

vegetation cover, minimum stomatal resistance, leaf area index, and surface roughness.

All these studies lead to the conclusion that it is necessary to improve the representation

of land-surface processes and the prescription of the surface parameters because they may

induce significant discontinuities in surface thermal forcing, and consequently, mesoscale

circulations. Such circulations may play an important role in patterns relating to local

meteorology, cumulus convection, and air quality.

Describing a set of parameters prescribing with accuracy the surface characteristics

represents a very important part of numerical simulations. However, it is still a hard task.

To specify the values of vegetation cover parameters, for example roughness parameter,

leaf area index, vegetation albedo, among others, one employs either values from the

literature or employs experimental values gathered from micrometeorological experiments.

Unfortunately, the reference values available do not always suit the cases that one desires
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to research; and the observational campaigns are expensive to carry out regularly, which

makes them even more unlikely to happen. This is the reason why we switched to a new

approach to the problem to estimate adequate and representative values of the parameter: a

technique known as ‘‘Numerical Inversion’’ or ‘‘Optimization’’.

Inversion problems arise when the structure of a physical system is to be identified on

the basis of observations of its output. In this work, the estimation of the parameters

involves optimizing the D78 model output against measured fluxes by iteratively changing

a set of input parameters. The optimization procedure provides a set of parameters which

gives the best match between simulated and observed fluxes.

One of the first works testing numerical inversion with micrometeorological data was

carried out by Sellers et al. (1989), who used heat flux data gathered in the Amazon

rainforest to calibrate the SiB model of Sellers et al. (1986). The results showed that many

reference values of parameters (e.g., leaf area index, vegetation cover, among others)

collected from the literature did not properly represent the environment and therefore

generated a poor model of the sensible and latent heat fluxes. The numerical inversion

employed by Sellers et al. (1989) proved to be very efficient in re-defining a set of values

more representative of the area studied. In that case, the use of the optimized parameters in

the SiB led to better agreement between the observed and simulated latent and sensible

heat fluxes.

In the present work, the model proposed by D78 is employed to simulate the turbulent

fluxes in a surface with vegetation, located in Iperó, Brazil. This model have been used by

a number of authors in works that had various approaches (Oliveira et al., 1998; Soares et

al., 1996; Targino, 1999). The main objectives of this paper are (i) to employ the D78

model to simulate energy budgets for Iperó for two different periods of the year, summer

and winter; (ii) to employ numerical inversion to estimate new values for the parameters of

D78; (iii) to evaluate objectively the results obtained by the inversion technique using a

statistical test.

A brief description of the data is given in Section 2. Modeling aspects pertinent to the

current study are given in Section 3. Statistical tools employed to evaluate the results are

described in Section 4. The results are described in Section 5.

2. Data and region of study

The data used in this work were obtained at the Brazilian Navy’s industrial installation

Centro Experimental ARAMAR (CEA). The CEA is located at Iperó in a country region

of the State of São Paulo, Brazil (23j25VS, 47j35VW), approximately 120 km from the

Atlantic Ocean coastline and 550 m above mean sea level, as shown in Fig. 1. The site is

located in the central area of the Tietê River valley, which is crossed by the Sorocaba River

in a NW–SE direction. The main topographic feature is the 900-m high Arac�oiaba Hill in
the southwest.

The area has been the subject of two field campaigns. The campaigns took place during

the winter, in July–August 1992, and in the summer, in March 1993. The surface was

covered by short grass 0.2-m high in July–August and by corn 0.5-m high inMarch. Table 1

describes the field campaigns employed in this work.
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2.1. Available data

During the field campaigns, surface-layer turbulence data were obtained using a

micrometeorological tower 12-m high with sensors installed at different levels, as

described below.

. Fluctuations of vertical velocity, temperature, and water vapor density at three fixed

levels: 3.0, 5.0, and 9.4 m above surface.
. Air temperature and relative humidity at three levels: 2.0, 4.0, and 8.8 m, during the

winter experiment of 1992; 2.0, 5.0 and 10.0 m, during the summer experiment of

1993.

Table 1

Description of the experiments used in this study

Period of the campaign Day studied Experiment Type of the surface where the

micrometeorological tower was installed

July 28–August 07, 1992 August 07, 1992 Winter Grass, 20 cm high

March 08–21, 1993 March 12, 1993 Summer Corn in growing phase, 50 cm high

Fig. 1. Map indicating the topography of the eastern part of the state of São Paulo, Brazil. Iperó is 120 km from

the shoreline and 80 km from the city of São Paulo (also plotted). The topography data have a 1�1-km resolution

(data source: Department of Geophysics, University of São Paulo, Brazil).
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. Air temperature, relative humidity and atmospheric pressure at surface level.

. Ground temperature at three levels below the surface: 1.0, 8.0, and 15.0 cm.

. Soil heat flux at two levels: 1.0 and 8.0 cm.

. Soil moisture at 4.0 cm.

. Net irradiance.

. Global, direct, and surface reflected irradiance.

. Morphological and thermal properties of the soil.

. Horizontal wind speed and direction (zonal component), at 11 m, during the winter

experiment; wind speed and direction (zonal and meridional components) at 11.5 m,

during the summer experiment.

Temperature was measured with HMP25C thermometers manufactured by Vaisala

(with an accuracy of 0.4 jC); relative humidity was measured with HMP35C hygrometer

manufactured by Vaisala (with an accuracy of 2%), both with a time response of 15 s.

Propeller anemometers of the R.M. Young were used to measure the zonal and meridional

components of wind velocity.

A sonic anemometer, a fine wire thermometer, and a krypton hygrometer were used

to measure, respectively, perturbations of vertical velocity (w V, with an accuracy of

0.05 m s�1), temperature (T V, with an accuracy of 0.2 jC), and water vapor density ( q V,
with an accuracy of 0.02 g m� 3). The turbulence data were sampled at a frequency of either

1 or 10 Hz and the covariance reported here was evaluated using 20-min averaging periods.

The data set was interpolated in time using a convergent weighted-averaging interpolation

scheme (Barnes, 1964). It is based on the supposition that the distribution of an atmospheric

variable at any given time can be represented by the summation of an infinite number of

independent waves, i.e., a Fourier integral interpolation. Further information about instru-

mentation and collected data can be found in Oliveira (1993).

To characterize the seasonal variation of the PBL, the data of August 7, 1992 (Julian

day 219) were taken as being representative of winter conditions. The summer conditions

were represented by the data of March 12, 1993 (Julian day 71). We will refer to them as

the winter experiment and the summer experiment, respectively. These days were chosen

due to the availability of uninterrupted observations, characterized by no gaps in the time

series of the fluxes of sensible and latent heat and net irradiance. Also, no rain was

observed during these two periods, and any significant synoptic disturbance or cloud

effects did not affect the local PBL time evolution.

3. The numerical models

The numerical models used in the present study consist of two modules, the so-called

forward model and the inverse model.

3.1. The forward model

To apply numerical inversion, one must first find a model that simulates the

generation of the data to be inverted. This model is referred to as the ‘‘forward model’’.
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The forward model used here is that proposed by D78 and allows simulating the time

evolution of the surface heat fluxes. The D78 model uses, as external forcings,

measurements of air temperature, specific humidity, and wind speed sampled from

meteorological observations at one level above the surface, here assumed to be 10 m

(see Section 2). As internal parameters, a set of values related to the soil and vegetation

is employed (Table 2). All the parameters listed in Table 2 must be assigned values

prior to the operation of D78. The model includes the variability of soil properties and

the influence of a vegetation cover on the exchanges between soil–vegetation and

atmosphere. This parameterization has been widely used, especially in mesoscale

models (e.g., McCumber, 1980; Garrett, 1982). Its formulation is described compre-

hensively in D78 and Bougeault (1991), and therefore only some characteristics will be

outlined here.

In the method proposed by D78, a single layer of vegetation with negligible heat

capacity is assumed to be present. Its horizontal density is characterized by the single

quantity rf, which is an area-averaged shielding factor associated with the degree to which

the foliage prevents short wave radiation from reaching the ground. Its value ranges

between 0 and 1. rf = 0 corresponds to the bare soil case, and rf = 1 corresponds to

complete radiative blocking.

The air in close proximity to the foliage is assumed to have properties intermediate

among the above-canopy air, the foliage surface, and the ground surface. In this case, three

different determinations of the temperature and the humidity are considered.

Air properties: Ta and qa represent the temperature and humidity of the air above the

canopy (measured at ‘anemometer’ reference level za).

Ground surface properties: Tg is the ground surface temperature that is determined

following Bhumralkar (1975) and Blackadar (1976). The determination of Tg basically

involves a numerical solution of an abbreviated surface energy budget equation (force-

restore method). They showed that it is possible to achieve qualitatively good results for

the prediction of Tg if the soil is divided into only two layers: one surface layer of very

small depth (typically 10 cm) that follows the diurnal cycle, and one deep layer (typically

1 m) that follows the annual cycle. The surface value of the soil temperature Tg is

Table 2

Input parameters required by D78

Symbol Definition Unit

z0 Roughness length m

z0h Canopy roughness length m

d Displacement height m

rf Foliage shielding factor –

ef Foliage emissivity –

eg Ground surface emissivity –

af Foliage albedo –

Ks Soil thermal diffusivity m2 s�1

wwilt Wilting value of w m3 m�3

wk Critical or saturated value of w m3 m�3
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predicted by a simple equation that includes a restoring term containing the deep soil

temperature T2

@Tg=@t ¼ �c1HA=ðqscsd1Þ � c2ðTg � T2Þ=s1 ð1aÞ

@T2=@t ¼ �HA=ðqscsd2Þ ð1bÞ

where T2 is the mean soil temperature over a layer of depth d2; HA is the sum of fluxes

toward the atmosphere; c1 and c2 are dimensionless constants; qs is the density of the

soil; cs is the specific heat of the soil; d1 and d2 are the soil depths influenced by the

diurnal and annual temperature cycles, respectively; and s1 is the diurnal period (24 h).

The first term in Eq. (1a) expresses the atmospheric forcing, whereas the second term is

seen to restore Tg exponentially toward the deep soil temperature that changes with an

annual scale only.

The success of the simplified formulation based on the force-restore method for the

prediction of ground surface temperature has inspired a similar effort for the prediction of

ground surface moisture content. The specific humidity at the surface qg is then related to

the ground surface moisture content. Assuming that most of the vertical movement of the

volumetric concentration of ground soil moisture w within the soil can be described by a

diffusion process, D78 proposed a parameterization of this process based on the analogy

with Eqs. (1a) and (1b)

@wg=@t ¼ �C1ðEg þ 0,1EtrÞ=ðqwd1VÞ � C2ðwg � w2Þ=s1 ð2aÞ

@w2=@t ¼ �ðEg þ EtrÞ=ðqwd2VÞ ð2bÞ

where wg is the ground surface value of w; qw is the density of liquid water; c1 and c2 are

constants analogous to C1 and C2; d1V and d2V are typical depths influenced by the diurnal

and seasonal soil moisture cycles, respectively. D78 suggested d1V = 10 cm and d2V = 50 cm;

w2 is the vertically averaged value of w over the layer of depth d2V; Eg is the evaporation

rate at the ground surface; Etr is the foliage transpiration rate.

The ground albedo depends on the water soil content, according to Idso et al. (1975)

ag ¼ 0:31� 0:17wg=wk, wgVwk

ag ¼ 0:14, wg > wk ð3Þ

Foliage surface properties: Finally, Tf and qf are the representative temperature and

moisture of the canopy itself. Tf is determined from an equilibrium energy budget of the

canopy, and qf is the equivalent moisture in the immediate vicinity of the leaves.

Additionally, the properties of the air inside the canopy, Taf and qaf, are defined as

empirical linear combinations of Ta, Tf, Tg and of qa, qf, qg, respectively.

The air velocity inside the canopy uaf is taken as different from, but a function of, the air

velocity outside the canopy ua. The exchange of heat and moisture between the canopy

and the atmosphere is assumed to be governed by uaf, Tf� Taf, qsat(Tf)� qaf. Fig. 2

illustrates the problem using the notation described in Table 3.
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3.2. The inverse model

Before introducing the concept of the inverse problem, we must explain what is a

forward problem. The concept of a forward problem may be interpreted as a process where,

from certain initial conditions, a system undergoes transformations and acquires new

configurations. An inverse formulation to a problem tries to estimate the parameters of a

system (boundary conditions and initial parameters), based on observed effects. A suitable

definition for inverse problem, attributed to Oleg M. Aifanov, and quoted by Woodbury

(1995) is ‘‘Solution of an inverse problem entails determining unknown causes based on

observation of their effects. This is in contrast to the corresponding direct problem, whose

solution involves finding effects based on a complete description of their causes.’’

3.3. Formulation of the problem

The problem approached here consists of determining of a set of parameters K used by

D78, which, in this case, may be the roughness parameter z0, vegetation emissivity ef,

Fig. 2. Schematic representation of the parameterization described by D78 (arrow widths do not represent flux

intensity).
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among others (Table 2). Basically, it is possible to specify these parameters by two

different ways. The first is to obtain values from the literature and perform trial-and-error

tests until a suitable set of values is found; this method is the most commonly used when

no reliable micrometeorological measurements are available. The second option is to use

measurements of meteorological variables and surface fluxes and then to optimize the

parameters for which most uncertainty exists. This involves operating the forward model

in an iterative loop driven by a least-square reduction algorithm. To do that we employed

time series of latent and sensible heat fluxes and net irradiance CL,i, CS,i and CR,i, where

the subindices L, S, and R stand for latent heat flux, sensible heat flux, and net irradiance,

respectively; i = 1,. . .,N, where N represents the number of observations. The mathemat-

ical approach used in this problem is made through an implicit method. An implicit

Table 3

Notation used in Fig. 2

Symbol Definition

d1, d1V Depth of the temperature and moisture diurnal cycles, respectively

d2, d2V Depth of the annual temperature cycle and seasonal moisture diurnal cycles, respectively

Etr Foliage transpiration rate

q Specific humidity

zo Roughness length

d Displacement height

z Vertical height

rair Atmospheric resistance

rs Generalized stomatal resistance

T Absolute temperature

T2 Mean soil temperature over layer of depth d2
u Wind speed

wg Volumetric concentration of soil moisture

w2 Soil moisture content within the layer of depth dV2
wdew Mass of liquid water retained by foliage

ws Soil moisture value in the root zone

a Albedo

e Emissivity

qair Air density

cH Dimensionless heat or moisture transfer coefficient

Hleaf Sensible heat flux of a representative leaf

LEleaf Latent heat flux of a representative leaf

Hs Sensible heat flux

LE Latent heat flux

RL Long-wave irradiance

RS Short-wave irradiance

G Soil heat flux at the surface

Subscripts Definition

a Reference ‘anemometer level’ height

h Height just above the top of canopy

f Foliage surface

af Mean value of the variable within the canopy

0 Evaluation at the surface of bare soil

g Value at the ground surface
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method tries to adjust the mathematical solution through an interactive search process until

the best agreement between observed and simulated series is reached.

In this work, the inversion problem is formulated as a non-linear optimization problem

subjected to constraints. The objective is to optimize (minimize) a given function f. This

function is called the objective function R(K). The objective function represents the sum of

the square differences between each series of calculated fluxes CL,i
calc(K), CS,i

calc(K), and

CR,i
calc(K) and the corresponding counterpart of experimental fluxes CL,i

exp, CS,i
exp, and CR,i

exp

obtained from the micrometeorological measurements. R(K) may be written in the

following way

RjðKÞ ¼
XN
i¼1

ðCcalc
J,i � C

exp
J,i Þ

2 ð4Þ

where J = L, S, R and have the same meaning as above.

K=[k1,. . .,kM] represents a vector of parameters kj to be estimated; M is the number of

parameters; each parameter kj follows ljV kjV uj, where lj and uj are the upper and lower

bounds of the searched parameters. These bounds restrict the domain values and specify an

interval whose values are physically accepted.

Usually, these limits come from previous information about the parameters. The bounds

especially in an inequality-like specification like that presented above, lead to improve-

ments in the convergence of the optimization algorithm. The choice of appropriate lj and uj
ensures that the inversion routine locates the parameters kj within acceptable physical

limits, keeping the algorithm from working in irrelevant response regions.

3.4. Iterative method of solution

The minimization of the objective function Rj(K), subject to simple bounds on K, is

solved using a first-order optimization algorithm provided by the E04UCF routine from

the Numerical Algorithms Group (NAG) Fortran Library (1993). This routine is designed

to minimize arbitrary smooth functions subject to constraints (simple bounds, linear, and

nonlinear constraints) using a sequential programming method. To initiate the inversion

process, it is necessary to have an initial guess of the desired result. In this case, trial values

for the set of parameters to be estimated are input. The forward model calculates time

series of heat and radiation fluxes using this first trial and compares the result with the

measured series using Eq. (4). Then an updated set of parameters is obtained, which is then

used to compute a new model response estimate. At each stage, the sum of the squares of

the error between the model response and the observation values is monitored, so that Eq.

(4) is minimized at each iteration. The iterative search for the estimated parameters

terminates whenever either the squared error or a relative change in the squared error

becomes less than a specified value. After these convergence criteria have been satisfied,

we may say that the estimated values of the soil–vegetation parameters have produced a

suitable description of the scenery studied. In practice, the inversion process is terminated

after a certain number L of iterations, and KL is accepted as an approximation for the set K

of parameters.
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It is desired that at each step the algorithm be closer to the convergence of the solution.

The nth iteration, generically, may be written as follows:

(i) Make an initial guess for the set of parameters that one intends to estimate: kj,

j = 1,. . .,M.

(ii) Specify upper and lower bounds, lj and uj, of the searched parameters kj.

(iii) Resolve the forward model, using the forcing variables and the initial guess, to

calculate heat and radiation fluxes, CL,i
calc(K), CS,i

calc(K), and CR,i
calc(K).

(iv) Compare the computed fluxes CL,i
calc(K), CS,i

calc(K), and CR,i
calc(K) with the measured

data CL,i
exp, CS,i

exp, and CR,i
exp, respectively, using Eq. (4).

(v) Minimize Eq. (4) subjected to ljV kjV uj.

(vi) Convergence test. If the residuals are still larger than a pre-specified value, the

solution set obtained becomes the new trial set for the next iteration. With this new

set of values, go back to step (iii) and repeat the process. Otherwise, optimization

terminates to yield the values of the parameters that give the best fit.

4. Statistical comparison of the results

To evaluate the agreement between simulated and observed fluxes, a statistical

comparison is performed using the t-statistic indicator proposed by Stone (1993). This

indicator is used along with two other well-known parameters: root-mean-square error

(RMSE) and mean-bias error (MBE). Both RMSE and MBE have been especially

employed as adjustment indicators of solar radiation models (Halouani et al., 1993; Soler,

1990; Ma and Iqbal, 1984). The RMSE and the MBE are defined as follows

RMSE ¼ 1

N

XN
i¼1

d2i

 !1=2

ð5Þ

MBE ¼ 1

N

XN
i¼1

di ð6Þ

Here N is the total number of observations and di is the deviation between the ith

calculated value and the ith measured value. The test of MBE provides information on the

long-term performance of models studied. A positive MBE value gives the average

amount of overestimation in the calculated values and vice versa. In general, a small MBE

is desirable. It should be noted, however, that overestimation of an individual observation

will cancel underestimation in a separate observation. On the other hand, the test on RMSE

provides information on the short-term performance of models, as it allows a term-by-term

comparison of the actual deviation between the calculated value and the measured value

(Halouani et al., 1993). Thus, each test by itself may not be an adequate indicator of a

model’s performance because it is possible to have a large value for the RMSE and, at the

same time, a small value for the MBE, and vice versa.

Therefore, Stone (1993) introduces the t-statistic as a new indicator of adjustment bet-

ween calculated and measured data. This statistical indicator allows models to be compared
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and, at the same time, can indicate whether or not a model’s estimates are statistically

significant at a particular confidence level.Moreover, it can be computed using both the root-

mean-square error and mean-bias error and takes into account the dispersion of the results,

which is neglected when the root-mean-square error and mean-bias error are considered

separately. Although Stone (1993) has employed this test to evaluate the accuracy of the

correlations for a solar radiation model, the t-statistic proved to be very efficient when

employed by Oliveira et al. (1998) to evaluate the performance of D78. The t-statistic is

defined as

t ¼ ðN � 1ÞMBE2

RMSE2 �MBE2

� �1=2

ð7Þ

To determine whether a model’s estimates are statistically significant, one has simply to

determine a critical tc value obtainable from standard statistical tables, e.g., tc(a/2) at the a
level of significance, and N� 1 degrees of freedom. For the model’s estimates to be judged

statistically significant at the 1� a confidence level, the calculated value must be between

the interval defined by � tc and tc (acceptance region under the reduced normal

distribution curve). Values outside this interval, the so-called critical region, are those

for which we reject the hypothesis that the parameter selection has improved the model.

5. Numerical results

Targino (1999) performed a number of sensitivity studies using D78 and concluded that

the model was not significantly sensitive to canopy roughness length z0h, displacement

Table 4

Search intervals for the winter experiment

Parameter Search interval Reference

z0 (m) 0.05–0.09 Sutton, 1953

rf 0.2–0.8 Oliveira et al., 1998

af 0.14–0.45 Burman and Pochot, 1994

ef 0.95–0.98 Brutsaert, 1991

eg 0.95–0.98 Brutsaert, 1991

wk 0.1–0.3 Deardorff, 1978

wwilt 0.1–0.5 Deardorff, 1978

Table 5

Search intervals for the summer experiment

Parameter Search interval Reference

z0 (m) 0.04–0.2 Oke, 1987

rf 0.2–0.8 Oliveira et al., 1998

af 0.15–0.25 Sellers, 1965

ef 0.98–0.99 Sellers and Dorman, 1987

eg 0.95–0.98 Brutsaert, 1991

wk 0.05–0.3 Deardorff, 1978

wwilt 0.1–0.5 Deardorff, 1978
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height d, and the soil thermal diffusivity Ks. This way, we reduced the number of

parameters to be estimated from 10 (expressed in Table 2) to 7, corresponding to those

which are most important to D78 and whose specification are likely to be affected by

uncertainties. The other internal parameters related to the soil–vegetation interface were

assumed to be similar to Targino (1999): for summer and winter, respectively, z0h = 0.1 and

0.06 m; d = 0.34 and 0.2 m, which is equal to three fourths of the foliage top height; and

Ks = 2.4� 10� 07 and 3.3� 10� 07 m2 s� 1, estimated from measured soil temperature and

heat flux profiles.

To initialize the inversion process, one needs to input the first guess values to the

optimization algorithm. The choice of a ‘‘good’’ first guess makes the difference between a

fast or slow convergence (Bard, 1974). The choice is usually based on previous knowledge

of the problem and then on personal intuition.

To carry out this study, a literature review was undertaken to find reference values for

the parameters to be estimated. Then, we established upper and lower bounds for each

parameter, which correspond to the search intervals of the optimization algorithm, assuring

that the algorithm finds physically consistent values. Thus, the first guess is composed of

values that belong to the established limits. A compilation of the reference values found is

summarized in Tables 4 and 5.

It is important to highlight some points concerning rf, wk and wwilt. Firstly, Oliveira et

al. (1998) do not suggest any interval for rf; actually, they use the value of 0.25 in their

simulations. After many trial-and-error tests, they concluded that this value provided the

most suitable representation of the scenarios studied (Oliveira, 2000, personal communi-

cation). D78 does not mention intervals for wk and wwilt either; instead, the suggested

values for wk and wwilt are 0.1 and 0.3, respectively. Due to lack of further information, in

Table 6

Estimated parameters for the winter experiment

Parameter Estimated value

z0 (m) 0.05

rf 0.45

af 0.35

ef 0.95

eg 0.95

wk 0.21

wwilt 0.42

Table 7

Estimated parameters for the summer experiment

Parameter Estimated value

z0 (m) 0.09

rf 0.35

af 0.25

ef 0.98

eg 0.95

wk 0.30

wwilt 0.50
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Fig. 3. Observed and modeled fluxes for the winter experiment: (a) sensible heat flux; (b) latent heat flux; (c)

net irradiance.
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Fig. 4. Observed and modeled fluxes for the summer experiment: (a) sensible heat flux; (b) latent heat flux; (c) net

irradiance.
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the present work these values have been assumed as intermediate values for the

corresponding established search interval.

Tables 6 and 7 show the values estimated by the inversion model for both experiments

studied. The number of iterations required until convergence was about 250. All values are

within the bounds established in Tables 4 and 5. The resulting values listed in Tables 6 and

7 are the ‘‘preferred’’ values that now provide the calibration of D78.

To establish the model’s correspondence with observations, simulations have been

performed employing the optimized parameters. Figs. 3 and 4 show the diurnal variations

of the surface fluxes for both experiments. As can be seen, D78 is able to simulate phase

and amplitude of the observed fluxes, presenting the typical patterns: the amplitude of the

fluxes being higher in summer than in winter. During the night, the sensible heat flux is

negative and the latent heat flux is slightly positive, as expected. The computed sensible

heat flux series agrees well with the observations for the winter experiment (Fig. 3a). The

computed sensible heat flux shows a somewhat worse agreement with the observed values

for the summer experiment (Fig. 4a).

The amplitude of the latent heat flux is much more pronounced in the summer

experiment (Fig. 4b) than for the winter experiment (Fig. 3a). Besides the seasonal course

of the short-wave radiation flux, the vegetation coverage contributes to this pattern, since

there is more moisture available to transform the net irradiance into latent heat flux,

compared with the winter experiment. For the net irradiance, the figure shows that the

model overestimates the observed values in the morning and shortly after evening,

especially for the winter experiment (Fig. 3c). However, it agrees quite well for the

convective period. For the summer experiment, the observed net irradiance presents

deviations during the convective period, probably due to clouds (Fig. 4c). In this situation,

D78 is unable to simulate this physical effect, since the parameterization included in the

model to calculate the radiation budget does not take into account clouds effects.

To objectively evaluate whether these model’s estimates are statistically significant, i.e.,

not significantly different from their measured counterparts, we employed the statistical

test described in the Section 4. With a degree of freedom equal to 72 and a significance

level equal to 0.001, the indicator values printed in Tables 8 and 9 were found.

Table 8

Statistical indicators of performance of D78 for winter experiment

Variable MBE RMSE t-Statistic tc (all cases)

HsAugust � 6.359 27.634 1.978

LEAugust 11.898 36.380 2.896 3.211

RNAugust 24.265 32.470 9.410

Table 9

Statistical indicators of performance of D78 for Julian day 71 (summer experiment)

Variable MBE RMSE t-Statistic tc (all cases)

HsMarch(71) 9.834 50.969 1.645

LEMarch(71) 26.657 42.223 6.811 3.211

RNMarch(71) 26.241 48.187 5.432
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Fig. 5. Observed and modeled fluxes for Julian day 75: (a) sensible heat flux; (b) latent heat flux; (c) net irradiance.

The D78 model was run using the same optimized values obtained for the summer experiment (Table 7).
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The sensible heat flux series for both experiments, calculated using the optimized

parameters, are comparable with observations according to t-statistic test, and so is the

latent heat flux for the winter experiment. For the summer experiment, the calculated latent

heat flux does not agree with the measured latent heat flux according to the t-statistic test.

This may be due to the overestimation of the calculated series, expressed by the positive

MBE. For the net irradiance series, the MBE has more or less comparable values, showing

overestimation of the calculated series.

It is worth outlining some features of the forward model that may have driven the

overestimation of the MBE of the latent heat flux for the summer experiment. To establish

the energy budget for the vegetative layer, D78 assumes that it has no heat capacity. This

may be especially important for this experiment, whose surface was covered by corn

50 cm high. The biomass associated with the canopy may hold an important fraction of the

energy that closes the energy budget. In this case, it would be important to introduce an

energy storage term in the energy budget equation.

For the net irradiance simulations, the shortcomings may be related with the exclusion

of a cloud parameterization in the D78 version employed in this study. During the winter

simulation the observed net irradiance series presents typical behavior of cloud coverage,

for the noon period. Evidently, this is not simulated by the forward model, showing that

there is difficulty to model radiative fluxes accurately. The overprediction of the net

radiation during the night may be due to the overprediction of the incoming infrared

radiation. Unfortunately there were not observations of all the radiative fluxes, otherwise

they could have been used as additional information for the inverse model. Thus, the errors

of simulation of the radiative fluxes can be compensated by inaccurate adjustments of the

parameters.

Since the values estimated by the inversion model should be representative for the area

and periods studied, it is important to show the general applicability of the method

discussed here. We choose to model another day for the summer period (Julian day 75) and

keep unchanged the optimized values shown in Table 7.

Fig. 5 shows the simulations for the sensible and latent heat fluxes and net irradiance.

The statistical indicators are printed in Table 10. The agreement between the observed and

modeled series are comparable to the summer experiment (Fig. 4). In the case of the

sensible heat flux the modeled series is much closer to observations than in Fig. 4a, where

the modeled curve overestimated observations in the noon period. The modeled net

irradiance fluxes, as in Fig. 4c, presents values between 80 and 100 W m � 2 larger than the

observed values for the night period. This common feature reinforces the idea that the

radiation scheme of the direct model lacks the description of important processes, and thus

the behavior of the radiation cycle for the night period is not well simulated.

Table 10

Statistical indicators of performance of D78 for Julian day 75

Variable MBE RMSE t-Statistic tc (all cases)

HsMarch(75) 9.483 49.845 1.609

LEMarch(75) 20.102 36.665 5.446 3.211

RNMarch(75) 10.699 67.370 1.336
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6. Concluding remarks

The main objective of this work was to assess the feasibility of a new approach to

obtain a set of representative parameters for calibrating D78.

The optimization process with the D78 model clearly can yield reasonable average

values of the free parameters. The optimized values provide encouraging evidence of the

applicability of the inversion technique as an alternative method to estimate parameters

when there are no reference values available. In the cases studied, the optimization yielded

parameter values that corresponded reasonably well with valued suggested in the

literature.

Comparisons between observations and model simulations using the optimized

parameters indicated that there is an adequate agreement between the series. The best

agreement is achieved for the sensible heat flux and the worst for net irradiance, according

to the statistical test employed to evaluate the simulations.

It is important to mention that the main drawbacks found in the simulations may be

especially due to the forward model formulation rather than to the inversion model. This

may be the case of the latent and net irradiance fluxes, whose results are presumably

affected by the lack of some important details in the parameterization, as discussed in the

previous section.

Those considerations would lead to improvements in the results of the inversion

algorithm.
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